Monatshefte für Chemie Chemical Monthly Printed in Austria

Optical Properties of Thallium(I) Perrhenate. Thallium-Localized Phosphorescence

Horst Kunkely and Arnd Vogler*

Institut für Anorganische Chemie, Universität Regensburg, D-93040 Regensburg, Germany

Received August 13, 2003; accepted August 14, 2003 Published online October 20, 2003 © Springer-Verlag 2003

Summary. The salt $Tl^+ReO_4^-$ shows a strong luminescence at $\lambda_{max} = 400 \text{ nm}$ which originates from the lowest-energy sp triplet of Tl^+ . A low-energy $Tl^I \rightarrow Re^{VII}$ metal-to-metal charge transfer excited state has not been observed.

Keywords. Electronic spectra; Charge transfer; Luminescence; Thallium; Rhenium.

Introduction

Heterobimetallic compounds are frequently characterized by properties which cannot be attributed to the separate metal centers but are caused by metal-metal interaction. In particular, combinations of two quite dissimilar metals (e.g. early/late transition metals [1, 2] or main group/transition metals [3, 4]) have attracted much attention. In this context, optical properties of salts which contain a s² cation such as Pb²⁺ and Bi³⁺ and a d⁰ anion including VO₄³⁻ and WO₄²⁻ have been studied in some detail [5, 6]. Owing to the presence of an electrondonating s² and an accepting d⁰ configuration, MMCT (metal-to-metal charge transfer) transitions may occur at relatively low energies. Indeed, combinations such as BiVO₄ or PbWO₄ display long-wavelength absorptions which have been assigned to $s^2 \rightarrow d^0$ MMCT transitions [5, 6]. Moreover, these MMCT excited states are emissive. Accordingly, a new family of luminescent compounds is available. However, it is quite surprising that MMCT of this type does not need much higher energies since, for example, Pb^{2+} is only a weak reductant and WO_4^{2-} a weak oxidant. In addition, s^2 ions are generally treated as two-electron reductants while electronic transitions are normally restricted to one-electron processes. It follows that the removal of one electron from Pb^{2+} and Bi^{3+} requires even more energy. These considerations cast some doubt on the existence of $s^2 \mathop{\rightarrow} d^0$ MMCT transitions at low energies. It is also conceivable that strong covalent Pb^{II}–O and Bi^{III}–O bonding modifies the electronic structure extensively. As a consequence,

^{*} Corresponding author. E-mail: arnd.vogler@chemie.uni-regensburg.de

efficient electronic coupling could create new low-energy electronic transitions between highly delocalized orbitals. However, under suitable conditions these problems may be avoided. We explored this possibility and selected the salt $Tl^+ReO_4^$ for the present study. The structure of this compound is well known [7]. Moreover, owing to the low charge and large size of Tl^+ , bonding to anions is largely ionic. In addition, Tl⁺ is generally a stronger reductant and consequently a more powerful CT donor than Pb^{2+} and Bi^{3+} while Re^{VII} in perthenate is a stronger electron acceptor than W(VI) in wolframate as indicated by the energy of the $O^2 \rightarrow d^0$ LMCT bands of these oxo anions [8, 9]. Accordingly, $s^2 \rightarrow d^0$ MMCT transitions of TlReO₄ are expected to occur at lower energies than those of other s^2/d^0 systems. Another advantage of Tl⁺ is the rather high energy of its sp transitions [10, 11] which are less likely to interfere with MMCT transitions. In the case of Pb^{2+} and Bi^{3+} sp bands appear at much longer wavelength [10, 11] and might obscure other bands of different origin. It follows that the electronic spectra of TlReO₄ should provide important information about the metal-metal interaction in related $M(s^2)^{n+}[M(d^0)O_4]^{n-}$ compounds in general.

Results

The salt TIReO₄ is only slightly soluble in water [12]. The absorption spectrum of a saturated aqueous solution of TIReO₄ consists of the superposition of the spectra of Tl_{aq}⁺ with $\lambda_{max} = 213$ nm ($\varepsilon = 5600 M^{-1} \text{ cm}^{-1}$) [10] and ReO₄⁻ with $\lambda_{max} = 207$ (6100) and 228 nm (3600) [8, 9]. The emission spectrum of TIReO₄ in water shows the typical luminescence of Tl_{aq}⁺ at $\lambda_{max} = 368$ nm [10]. The excitation spectrum matches the absorption spectrum of Tl_{aq}⁺.

The electronic spectrum of solid TlReO₄ was measured as scattered transmission spectrum (Fig. 1). It shows two maxima at $\lambda = 205$ and 244 nm. TlReO₄ displays a strong luminescence (Fig. 2) at $\lambda_{max} = 400$ nm. The excitation spectrum at $\lambda = 243$ nm coincides with the second maximum of the scattered transmission spectrum, but the excitation band (Fig. 2) is rather narrow and covers only a small part of the transmission spectrum.

Fig. 1. Scattered transmission spectrum of finely powdered $Tl^+ReO_4^-$ in *n*-hexane at room temperature, 1 cm cell

Fig. 2. Electronic emission ($\lambda_{em} = 400 \text{ nm}$) and excitation ($\lambda_{exc} = 250 \text{ nm}$) spectrum of solid Tl⁺ReO₄⁻ at room temperature, intensity in arbitrary units

For the purpose of comparison the spectra of solid Tl_2SO_4 were also measured. The emission ($\lambda_{max} = 401 \text{ nm}$) and excitation ($\lambda_{max} = 244 \text{ nm}$) spectra of solid Tl_2SO_4 are nearly identical to those of $TIReO_4$.

Discussion

The structure of TlReO₄ consists of isolated ReO₄ tetrahedra and TlO₈ as well as TlO₉ polyhedra [7]. With regard to the environment of Tl⁺ the structure of TlReO₄ is comparable to that of Tl₂SO₄ [13, 14] which exists in the β -K₂SO₄ structure [15]. Solid Tl₂SO₄ is thus also characterized by distinct SO₄ tetrahedra and TlO₈ polyhedra.

The absorption of sulfate is negligible above $\lambda = 200 \text{ nm}$ and SO_4^{2-} is not luminescent. Accordingly, the electronic spectra of Tl_2SO_4 can be unambigously attributed to those of the Tl^1O_8 polyhedron. The excitation ($\lambda_{\text{max}} = 244 \text{ nm}$) and luminescence ($\lambda_{\text{max}} = 401 \text{ nm}$) spectra are very similar to those of Tl_{aq}^+ , but are shifted to longer wavelength. The excitation of Tl^+ belongs to a spin-forbidden sp transition ${}^1\text{S}_0 \rightarrow {}^3\text{P}_1$ [10, 11]. Since the luminescence originates from the ${}^3\text{P}_1$ sp excited state it is a phosphorescence.

The excitation and luminescence spectra of $TIReO_4$ are nearly identical to those of Tl_2SO_4 . Accordingly, the emission of $TIReO_4$ originates also from the lowest sp triplet state. Moreover, this triplet can be selectively excited. This excitation maximum is also observed as a distinct maximum in the scattered transmission spectrum of $TIReO_4$.

It follows from these observations that the emissive sp triplet of Tl^+ is not quenched by excited state electron transfer to ReO_4^- . Of course, such an electron transfer would lead to the population of the $Tl^I \rightarrow Re^{VII}$ MMCT state. The absence of electron transfer quenching is also consistent with the absence of a long-wavelength $Tl^I \rightarrow Re^{VII}$ MMCT absorption which does apparently not appear in the transmission spectrum. Nevertheless, such a MMCT state should exist, but must be located at energies well above the Tl^+ sp triplet. Unfortunately, the detection of a new MMCT absorption at shorter wavelength is hampered by the presence of the internal bands of Tl^+ and ReO_4^- which would obscure new MMCT absorptions of lower intensity.

Conclusions

TlReO₄ is characterized by an emissive sp triplet of Tl⁺. A low-energy Tl^I \rightarrow Re^{VII} MMCT state is apparently not present. This observation does not support the assumption that other s²/d⁰ combinations such as BiVO₄ or PbWO₄ provide MMCT states as lowest-energy excited states.

Experimental

Materials

The salts Tl_2SO_4 and NH_4ReO_4 are commercially available from Strem. The compound TIReO₄ was easily prepared by a literature procedure [12], but can be also purchased from Aldrich. All solvents used for spectroscopic measurements were of spectrograde quality.

Instrumentation

Absorption spectra were measured with a Varian Cary 50 or a Kontron Uvikon 860 spectrophotometer. Emission and excitation spectra were recorded on a Hitachi 850 spectrofluorometer equipped with a Hamamatsu 928 photomultiplier for measurements up to $\lambda = 900$ nm. The luminescence spectra were corrected for monochromator and photomultiplier efficiency variations.

Acknowledgements

Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- [1] Stephan DW (1989) Coord Chem Rev 95: 41
- [2] Wheatley N, Kalck P (1999) Chem Rev 99: 3379
- [3] Herrmann WA (1986) Angew Chem Int Ed Engl 25: 56
- [4] Whitmire KH (1988) J Coord Chem 17: 95
- [5] Blasse G (1988) Progr Solid State Chem 18: 79
- [6] Blasse G (1991) Structure and Bonding 76: 153
- [7] Rögner P, Range K-J (1993) Z anorg allg Chem 619: 1017
- [8] Müller A, Diemann E, Jørgensen CK (1973) Structure and Bonding 14: 23
- [9] Lever ABP (1984) Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, p 320
- [10] Vogler A, Nikol H (1993) Comments Inorg Chem 14: 245
- [11] Vogler A, Nikol H (1992) Pure Appl Chem 64: 1311
- [12] Smith WT (1951) J Am Chem Soc 73: 77
- [13] Gatow G (1960) Naturwiss **47**: 442
- [14] Pannetier G, Gaultier MCR (1966) Acad Sci Paris C 263: 132
- [15] Gaultier M, Pannetier G (1968) Bull Soc Chim Fr 105